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Today’s Objectives

Mapping

— Feature mapping

— Grid Mapping
Introduction to SLAM
Feature/Landmark SLAM

Grid Mapping (GMapping)



Why Mapping?

* Learning maps is one of the
fundamental problems in
mobile robotics

 Maps allow robots to efficiently
carry out their tasks, allow
localization ...

* Successful robot systems rely on maps for
localization , path planning, activity planning
etc.
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Motivation and Challenges
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Advantages: Faster objective completion time, re-
assign task in case a robot fails, tasks can be done
which are beyond the capability of single robot

Challenges:

— Map merging, large dynamic sparse outdoor
environment

— Controlling and managing of multi-robot system is
challenging because the system requires handling
of multiple robots with heterogeneous capabilities

— Standard software architecture to avoid re-
implementation of basic communication and non-
interoperability

Application: Multi-robot map building in absence

of priori map such as sea ports, destroyed nuclear
plants...




Problems in Mapping

* Sensor interpretation

— How do we extract relevant information from raw
sensor data?

— How do we represent and integrate this
information over time?

e Robot locations have to be estimated

— How can we identify that we are at a previously
visited place?

— This problem is the so-called data association
problem.
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The General Problem of Mapping

* Formally, mapping involves, given the sensor
data,

d={u,z,u,,2,,...., U,z }

to calculate the most likely map

m =argmax P(m|d)

m



Mapping as a Chicken and Egg
Problem

So far we learned how to estimate the pose of
the vehicle given the data and the map.

Mapping, however, involves to simultaneously
estimate the pose of the vehicle and the map.

The general problem is therefore denoted as
the simultaneous localization and mapping
problem (SLAM).

Throughout this section we will describe how
to calculate a map given we know the pose of
the vehicle.



Types of SLAM-Problems

* Grid maps or scans

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;...]

* Landmark-based =

X X
e
x
>

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;...
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Full vs. Online SLAM

 Full SLAM calculates the robot state over all
time up to time t

p(Xl:t,WI|ZI:t,I/l1:t)

e Online SLAM calculates the robot state for the
current time t

px,,m|z,,u,)= _H : -Ip(xm m|z,,u,) dxdx,..dx,_,



Full vs. Online SLAM
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p(X1 1, M | Z1:t,Ul: t) pex,m|z,,u,)= H‘...J‘p(xu,m | 2y, 1y, ) iy, ..dx,



Two Example SLAM Algorithms

* Extended Kalman Filter (EKF) SLAM

— Solves online SLAM problem

— Uses a linearized Gaussian probability distribution
model

* FastSLAM
— Solves full SLAM problem
— Uses a sampled particle filter distribution model



Extended Kalman Filter SLAM

* Solves the Online SLAM problem using a
linearized Kalman filter

* One of the first probabilistic SLAM algorithms

* Not used frequently today but mainly shown
for its explanatory value



Kalman Filter Components

Linear discrete time dynamic system (motion model)

State Control input Process noise

I/

xt+l = Ext +Btut +Gl‘wt

SN

State transition  Control input Noise input
function function function with covariance Q

Measurement equation (sensor model)

Senqueading S’:[ate vr noise with covariance R
Zt+1 — Ht+1xt+1 + nt+1

Sensor function



EKF Equations

Propagation (motion model):

X =FX,, +Bu,
Pr+1/t — E})t/tE + Gth
Update (sensor model):
Zt+1 - Ht+1xt+l/t
Vil = 24401 — 2441
T
St+1 - Ht+1])t+1/tH +1 +Rt+1
Kt+1 I)t+1/th+1 S
xt+1/t+1 t+1/t +Kt+1 t+1
})t+1/t+1 - [)t+1/t _})t+1/th+1 S Ht+1Pt+1/t
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EKF Example

eInitial State and Uncertainty

eUsing Range Measurements
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EKF Example

*Predict Robot Pose and Uncertainty
attime 1

Dr. —Ing. Ahmad Kamal Nasir 16



06.04.2015

EKF Example

eCorrect pose and pose uncertainty

eEstimate new feature uncertainties
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EKF Example

ePredict pose and uncertainty of pose
at time 2

ePredict feature measurements and
their uncertainties
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EKF Example
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eCorrect pose and mapped features

eUpdate uncertainties for mapped

t=2 features

eEstimate uncertainty of new features
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Implementation

Robot-1
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SLAM

Simulation of robot position and uncertainity due to non-systematic errors

e ! 1 1 ! ! Simulated Robot
: . : 0 Simulated Landmarks
—o— Estimated Robot
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Effect of odometeric errors on robot uncertainty Feature based SLAM to reduce robot uncertainty
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EE565: Mobile Robotics Module 4: Localization and Mapping

Occupancy Grid based SLAM

Grid based SLAM Experiment on H-F1 Grid based SLAM Experiment on H-FO
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Mapping Results

11
N 3| =

—]

el B
misiNIE

Original map

Lo 1ol ol R
d .7 P
EEE =
'2%' T

Planned trajectory Map using Hough transform Map using RANSAC
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SLAM ormulization

Robot state: x,. = [x,y, 0]T
Line features: m; = [r, a]”

Plane features: m, = [r, 0, @]"

IR | P7"17"1 PT17”2 PT1ml1 Prlmpl
Xro T%T1 PT%TZ PT'Z:ml1 2Mp1
X = mill P= PT1??111 PTz.mu Pml%mu Pmllmpl
m:pl Prlmpl Przmm Pmp1ml1 Pmplmpl
Map (robot states + features) Map covariance
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EE565: Mobile Robotics Module 4: Localization and Mapping

Methodology

Kalman filter Create clusters Create clusters

prediction
P‘—I

Update robot pose

More clusters? - More clusters?

h 4

Feature R
Line segment Plane patch

map . . . .
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* et existing feature: l
Data association Data association

| Feature

map
Robot-1 pose
Robot-2 pose
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-

Line segment-1

Line segment-2
™
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matched?

Segment
matched?

-

Planer patch-1 —

Planer patch-1
£ Update robot pose
Kalman filter and features Kalman filter

update update

Feature

map

Feature Map
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Core CSLAM Modules

Prediction
Clustering/Segmentation

Feature Extraction
Correspondence/ Data association
Map Update

New Feature Augmentation

Map Management



EE565: Mobile Robotics Module 4: Localization and Mapping

Prediction

f(x,, u;, w;) (Robot kinematic motion model)

m,; represents all of the existing line features
m,, represents the set of all existing plane features

| f (x,, us, w;) Jacobian wrt. robot pose e

6xr1

F, —f(xr,ut, w;) Jacobian wrt. Noise
Q = Covariance of the noise input

_ _ | . T
f(xrl, ut, Wt) Frl PT'1T1 _Frl t Fn Q
_ | f Gy ug, wy) p .= B, I,
Xt+1 = my t+1 = E
rnm &1
m .
- p - | r1my Fr1
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Clustering / Segmentation

D(r;,7i41) = \/ri2 + 1A, — 21141 c0s(AB)

D¢p = Co + € min(ry, 7341)

D(r;, 1;
C, = /2(1 = cos(AB)) = (i, i)
i
Y
Clustey.3 st Lee Segmentation
Cluster-2 ’ Cluster-5

Cluster-1

IEPF Segmentation




Line Feature Extraction

n n
1 _ _
@ =zatan2(~2 ) G- y)E-x) , ) F-y)?— (@ —x)?) o
s o ~— Uncertainty in estimated
line parameters (r,a)
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r = x cos(a) + y sin(a) - "@
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Correspondence / Data association

Z; is the innovation
Z; is the covariance of the innovation
n is the threshold

z;T - Z; 71 - z; < n? Mahalanobis distance criterion

Zi=S+R S is the covariance of the expected feature

2
o. o . .
R = [ r r“] R is the covariance of the measured feature

2
O-O(I' O-Of




Sensor Observation Model

The update step of the SLAM process in case of heterogeneous set of features is
different for each type of feature. The line features only update the portion of the
map containing the robot and line features and similarly for plane features.

. ri rt —x, - cos(at) —vy. - sin(at
f(x ,y‘) =|°[=1]"7 ’ ( g) r ( g) Sensor’s observation model
r7g al
e

aé — 0,
_ _ - .
z, =yl —yl = [ T] — [ ei] New information from observed feature
am ae
H, = [_ CO(‘;(%) B S”é(ae) 01] Jacobian of sensor model wrt. robot pose
H;, = [(1) Xr o sin(ae) 1_ Y COS(%)] Jacobian of sensor model wrt. feature
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Map Update

Zi - S] + Ri
0-0(1" O-CZ
By Prp1 | .
H
K,, = Pp1r: prﬂ?i : [H;"] (7171
. pi
_Ppnr Ppnpi—

Covariance of the innovation

Measure feature covariance

Kalman gain

Map update

Map uncertainty reduced
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Inverse sensor Observation Model

"+, cos(a"“ +0,) + y, - sin(a*t* + HT)]
o,

f(xr y*1) = [11] [

[ Py Prm PT"]‘;' | YrT
P = Prm Pmm Pr’I;n'YrT
Y By Yo Py |V By Y+ Yi,.. R Yzfmf— Covariance of new feature

y, = [cos(al M1+0,) sin(a]"'+6,) v -cos(a*t +0,) —x, - sin(a]"t + 6, )]
0 0 1

_ [1 v, - cos(al*t + 0,) — x, - sin(a]""! + HT)]

ln+1 — 1
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Map Management

State Vector (Ma
(Map) .':1 P2 T p3 P4

Robot,[x vy 0]T

' |
Robot,[x vy 6]T _ /r\ X
NI

LineFeature,[r a x, v, x5 5|7

LineFeaturey[r a x; v, x, v,]T.

v

Line-Segments Fusion
AC = (Cy — Ay, Cy—A,) )

BA = (B, — Ay ,By, — 4y) \ 3
AC, - ABy + AC, - AB_y T,
== D

R, =
1 AB.,z2 + AB,2 Overlapped Line-Segments Fusion
x y

® =
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Summary

Mapping

— Feature mapping

— Grid Mapping
Introduction to SLAM
Feature/Landmark SLAM

Grid Mapping (GMapping)



EE565: Mobile Robotics Module 4: Localization and Mapping

Questions
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